

CRP-GATEWAY-PARENT
VERSION 1.9.6-CUB

Code analysis

By: Administrator

2024-10-07

crp-gateway-parent

1

CONTENT

Content ... 1

Introduction .. 2

Configuration .. 2

Synthesis ... 3

Analysis Status .. 3

Quality gate status .. 3

Metrics .. 3

Tests .. 3

Detailed technical debt ... 4

Metrics Range ... 5

Volume .. 5

Issues .. 6

Charts .. 6

Issues count by severity and type ... 8

Issues List .. 8

Security Hotspots .. 28

Security hotspots count by category and priority ... 28

Security hotspots List .. 29

crp-gateway-parent

2

INTRODUCTION

This document contains results of the code analysis of crp-gateway-parent.

Parent pom providing dependency and plugin management for applications built with Maven

CONFIGURATION

• Quality Profiles

o Names: Sonar way [Java]; Sonar way [XML];

o Files: AYEqSPBlRapRvVRDGywn.json; AYEqSPPaRapRvVRDGy6D.json;

• Quality Gate

o Name: Standard

o File: Standard.xml

crp-gateway-parent

3

SYNTHESIS

ANALYSIS STATUS

Reliability Security Security Review Maintainability

QUALITY GATE STATUS

Quality Gate Status

Metric Value

Reliability Rating on New Code OK

Security Rating on New Code OK

Maintainability Rating on New Code OK

Duplicated Lines (%) on New Code OK

Security Hotspots Reviewed on New Code OK

METRICS

Coverage Duplication Comment
density

Median number of lines of
code per file

Adherence to coding
standard

0.0 % 4.1 % 6.3 % 47.0 97.3 %

TESTS

Total Success Rate Skipped Errors Failures

crp-gateway-parent

4

0 0 % 0 0 0

DETAILED TECHNICAL DEBT

Reliability Security Maintainability Total

- - 8d 6h 15min 8d 6h 15min

crp-gateway-parent

5

METRICS RANGE

 Cyclomatic
Complexity

Cognitive
Complexity

Lines of
code per

file

Comment
density (%) Coverage Duplication (%)

Min 0.0 0.0 3.0 0.0 0.0 0.0

Max 2486.0 1698.0 18604.0 62.1 0.0 61.7

VOLUME

Language Number

Java 35332

XML 2190

Total 37522

crp-gateway-parent

6

ISSUES

CHARTS

0%

25%

45%

29%

1%

Number of issues by severity

BLOCKER

CRITICAL

MAJOR

MINOR

INFO

0%0%

100%

Number of issues by type

BUG

VULNERABILITY

CODE_SMELL

crp-gateway-parent

7

0123456789
101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301

27/08/2022 00:00

05/12/2022 00:00

15/03/2023 00:00

23/06/2023 00:00

01/10/2023 00:00

09/01/2024 00:00

18/04/2024 00:00

27/07/2024 00:00

04/11/2024 00:00

12/02/2025 00:00

Evolution of number of issues

0

1

27/08/2022 00:00

05/12/2022 00:00

15/03/2023 00:00

23/06/2023 00:00

01/10/2023 00:00

09/01/2024 00:00

18/04/2024 00:00

27/07/2024 00:00

04/11/2024 00:00

12/02/2025 00:00

Evolution of technical debt ratio (%)

crp-gateway-parent

8

ISSUES COUNT BY SEVERITY AND TYPE

Type / Severity INFO MINOR MAJOR CRITICAL BLOCKER

BUG 0 0 0 0 0

VULNERABILITY 0 0 0 0 0

CODE_SMELL 3 75 118 66 1

ISSUES LIST

Name Description Type Severity Number

Child class fields
should not shadow
parent class fields

Having a variable with the same name in two
unrelated classes is fine, but do the same thing within
a class hierarchy and you’ll get confusion at best,
chaos at worst. Noncompliant Code Example public
class Fruit { protected Season ripe; protected Color
flesh; // ... } public class Raspberry extends Fruit {
private boolean ripe; // Noncompliant private static
Color FLESH; // Noncompliant } Compliant Solution
public class Fruit { protected Season ripe; protected
Color flesh; // ... } public class Raspberry extends
Fruit { private boolean ripened; private static Color
FLESH_COLOR; } Exceptions This rule ignores same-
name fields that are static in both the parent and
child classes. This rule ignores private parent class
fields, but in all other such cases, the child class field
should be renamed. public class Fruit { private
Season ripe; // ... } public class Raspberry extends
Fruit { private Season ripe; // Compliant as parent
field 'ripe' is anyway not visible from Raspberry // ...
}

CODE_SMELL BLOCKER 1

Methods should not
be empty

There are several reasons for a method not to have a
method body: It is an unintentional omission, and
should be fixed to prevent an unexpected behavior in
production. It is not yet, or never will be,
supported. In this case an
UnsupportedOperationException should be thrown.
The method is an intentionally-blank override. In this
case a nested comment should explain the reason for
the blank override. Noncompliant Code Example
public void doSomething() { } public void
doSomethingElse() { } Compliant Solution @Override
public void doSomething() { // Do nothing because
of X and Y. } @Override public void

CODE_SMELL CRITICAL 11

crp-gateway-parent

9

doSomethingElse() { throw new
UnsupportedOperationException(); } Exceptions
Default (no-argument) constructors are ignored when
there are other constructors in the class, as are
empty methods in abstract classes. public abstract
class Animal { void speak() { // default
implementation ignored } }

String literals should
not be duplicated

Duplicated string literals make the process of
refactoring error-prone, since you must be sure to
update all occurrences. On the other hand, constants
can be referenced from many places, but only need
to be updated in a single place. Noncompliant Code
Example With the default threshold of 3: public void
run() { prepare("action1"); //
Noncompliant - "action1" is duplicated 3 times
execute("action1"); release("action1"); }
@SuppressWarning("all") // Compliant
- annotations are excluded private void method1() {
/* ... */ } @SuppressWarning("all") private void
method2() { /* ... */ } public String method3(String a)
{ System.out.println("'" + a + "'"); //
Compliant - literal "'" has less than 5 characters and is
excluded return ""; //
Compliant - literal "" has less than 5 characters and is
excluded } Compliant Solution private static final
String ACTION_1 = "action1"; // Compliant public
void run() { prepare(ACTION_1); //
Compliant execute(ACTION_1); release(ACTION_1);
} Exceptions To prevent generating some false-
positives, literals having less than 5 characters are
excluded.

CODE_SMELL CRITICAL 21

Generic wildcard types
should not be used in
return types

It is highly recommended not to use wildcard types as
return types. Because the type inference rules are
fairly complex it is unlikely the user of that API will
know how to use it correctly. Let’s take the example
of method returning a "List<? extends Animal>".
Is it possible on this list to add a Dog, a Cat, … we
simply don’t know. And neither does the compiler,
which is why it will not allow such a direct use. The
use of wildcard types should be limited to method
parameters. This rule raises an issue when a method
returns a wildcard type. Noncompliant Code Example
List<? extends Animal> getAnimals(){...}
Compliant Solution List<Animal>
getAnimals(){...} or List<Dog> getAnimals(){...}

CODE_SMELL CRITICAL 10

crp-gateway-parent

10

Fields in a
"Serializable" class
should either be
transient or
serializable

Fields in a Serializable class must themselves be
either Serializable or transient even if the class is
never explicitly serialized or deserialized. For
instance, under load, most J2EE application
frameworks flush objects to disk, and an allegedly
Serializable object with non-transient, non-
serializable data members could cause program
crashes, and open the door to attackers. In general a
Serializable class is expected to fulfil its contract and
not have an unexpected behaviour when an instance
is serialized. This rule raises an issue on non-
Serializable fields, and on collection fields when they
are not private (because they could be assigned non-
Serializable values externally), and when they are
assigned non-Serializable types within the class.
Noncompliant Code Example public class Address {
//... } public class Person implements Serializable {
private static final long serialVersionUID =
1905122041950251207L; private String name;
private Address address; // Noncompliant; Address
isn't serializable } Compliant Solution public class
Address implements Serializable { private static final
long serialVersionUID = 2405172041950251807L; }
public class Person implements Serializable { private
static final long serialVersionUID =
1905122041950251207L; private String name;
private Address address; } Exceptions The alternative
to making all members serializable or transient is to
implement special methods which take on the
responsibility of properly serializing and de-serializing
the object. This rule ignores classes which implement
the following methods: private void
writeObject(java.io.ObjectOutputStream out)
throws IOException private void
readObject(java.io.ObjectInputStream in) throws
IOException, ClassNotFoundException; See MITRE,
CWE-594 - Saving Unserializable Objects to Disk
Oracle Java 6, Serializable Oracle Java 7, Serializable

CODE_SMELL CRITICAL 1

Instance methods
should not write to
"static" fields

Correctly updating a static field from a non-static
method is tricky to get right and could easily lead to
bugs if there are multiple class instances and/or
multiple threads in play. Ideally, static fields are only
updated from synchronized static methods. This rule
raises an issue each time a static field is updated from
a non-static method. Noncompliant Code Example
public class MyClass { private static int count = 0;
public void doSomething() { //... count++; //

CODE_SMELL CRITICAL 1

crp-gateway-parent

11

Noncompliant } }

Cognitive Complexity
of methods should not
be too high

Cognitive Complexity is a measure of how hard the
control flow of a method is to understand. Methods
with high Cognitive Complexity will be difficult to
maintain. See Cognitive Complexity

CODE_SMELL CRITICAL 20

A conditionally
executed single line
should be denoted by
indentation

In the absence of enclosing curly braces, the line
immediately after a conditional is the one that is
conditionally executed. By both convention and good
practice, such lines are indented. In the absence of
both curly braces and indentation the intent of the
original programmer is entirely unclear and perhaps
not actually what is executed. Additionally, such code
is highly likely to be confusing to maintainers.
Noncompliant Code Example if (condition) //
Noncompliant doTheThing(); doTheOtherThing();
somethingElseEntirely(); foo(); Compliant Solution if
(condition) doTheThing(); doTheOtherThing();
somethingElseEntirely(); foo();

CODE_SMELL CRITICAL 1

"String#replace"
should be preferred to
"String#replaceAll"

The underlying implementation of String::replaceAll
calls the java.util.regex.Pattern.compile() method
each time it is called even if the first argument is not
a regular expression. This has a significant
performance cost and therefore should be used with
care. When String::replaceAll is used, the first
argument should be a real regular expression. If it’s
not the case, String::replace does exactly the same
thing as String::replaceAll without the performance
drawback of the regex. This rule raises an issue for
each String::replaceAll used with a String as first
parameter which doesn’t contains special regex
character or pattern. Noncompliant Code Example
String init = "Bob is a Bird... Bob is a Plane... Bob is
Superman!"; String changed = init.replaceAll("Bob is",
"It's"); // Noncompliant changed =
changed.replaceAll("\\.\\.\\.", ";"); // Noncompliant
Compliant Solution String init = "Bob is a Bird... Bob is
a Plane... Bob is Superman!"; String changed =
init.replace("Bob is", "It's"); changed =
changed.replace("...", ";"); Or, with a regex: String
init = "Bob is a Bird... Bob is a Plane... Bob is
Superman!"; String changed =
init.replaceAll("\\w*\\sis", "It's"); changed =
changed.replaceAll("\\.{3}", ";"); See S4248 - Regex
patterns should not be created needlessly

CODE_SMELL CRITICAL 1

crp-gateway-parent

12

Track uses of "TODO"
tags

TODO tags are commonly used to mark places where
some more code is required, but which the developer
wants to implement later. Sometimes the developer
will not have the time or will simply forget to get back
to that tag. This rule is meant to track those tags and
to ensure that they do not go unnoticed.
Noncompliant Code Example void doSomething() {
// TODO } See MITRE, CWE-546 - Suspicious
Comment

CODE_SMELL INFO 3

Source files should not
have any duplicated
blocks

An issue is created on a file as soon as there is at least
one block of duplicated code on this file

CODE_SMELL MAJOR 36

Standard outputs
should not be used
directly to log anything

When logging a message there are several important
requirements which must be fulfilled: The user
must be able to easily retrieve the logs The format
of all logged message must be uniform to allow the
user to easily read the log Logged data must
actually be recorded Sensitive data must only be
logged securely If a program directly writes to the
standard outputs, there is absolutely no way to
comply with those requirements. That’s why defining
and using a dedicated logger is highly recommended.
Noncompliant Code Example System.out.println("My
Message"); // Noncompliant Compliant Solution
logger.log("My Message"); See OWASP Top 10
2021 Category A9 - Security Logging and Monitoring
Failures OWASP Top 10 2017 Category A3 -
Sensitive Data Exposure CERT, ERR02-J. - Prevent
exceptions while logging data

CODE_SMELL MAJOR 3

Collapsible "if"
statements should be
merged

Merging collapsible if statements increases the code’s
readability. Noncompliant Code Example if (file !=
null) { if (file.isFile() || file.isDirectory()) { /* ... */
} } Compliant Solution if (file != null &&
isFileOrDirectory(file)) { /* ... */ } private static
boolean isFileOrDirectory(File file) { return
file.isFile() || file.isDirectory(); }

CODE_SMELL MAJOR 5

Local variables should
not shadow class fields

Overriding or shadowing a variable declared in an
outer scope can strongly impact the readability, and
therefore the maintainability, of a piece of code.
Further, it could lead maintainers to introduce bugs
because they think they’re using one variable but are
really using another. Noncompliant Code Example
class Foo { public int myField; public void
doSomething() { int myField = 0; ... } } See

CODE_SMELL MAJOR 6

crp-gateway-parent

13

CERT, DCL01-C. - Do not reuse variable names in
subscopes CERT, DCL51-J. - Do not shadow or
obscure identifiers in subscopes

Utility classes should
not have public
constructors

Utility classes, which are collections of static
members, are not meant to be instantiated. Even
abstract utility classes, which can be extended,
should not have public constructors. Java adds an
implicit public constructor to every class which does
not define at least one explicitly. Hence, at least one
non-public constructor should be defined.
Noncompliant Code Example class StringUtils { //
Noncompliant public static String
concatenate(String s1, String s2) { return s1 + s2; }
} Compliant Solution class StringUtils { // Compliant
private StringUtils() { throw new
IllegalStateException("Utility class"); } public static
String concatenate(String s1, String s2) { return s1 +
s2; } } Exceptions When class contains public static
void main(String[] args) method it is not considered
as utility class and will be ignored by this rule.

CODE_SMELL MAJOR 11

Generic exceptions
should never be
thrown

Using such generic exceptions as Error,
RuntimeException, Throwable, and Exception
prevents calling methods from handling true, system-
generated exceptions differently than application-
generated errors. Noncompliant Code Example
public void foo(String bar) throws Throwable { //
Noncompliant throw new RuntimeException("My
Message"); // Noncompliant } Compliant Solution
public void foo(String bar) { throw new
MyOwnRuntimeException("My Message"); }
Exceptions Generic exceptions in the signatures of
overriding methods are ignored, because overriding
method has to follow signature of the throw
declaration in the superclass. The issue will be raised
on superclass declaration of the method (or won’t be
raised at all if superclass is not part of the analysis).
@Override public void myMethod() throws Exception
{...} Generic exceptions are also ignored in the
signatures of methods that make calls to methods
that throw generic exceptions. public void
myOtherMethod throws Exception { doTheThing();
// this method throws Exception } See MITRE,
CWE-397 - Declaration of Throws for Generic
Exception CERT, ERR07-J. - Do not throw
RuntimeException, Exception, or Throwable

CODE_SMELL MAJOR 8

crp-gateway-parent

14

Try-catch blocks
should not be nested

Nesting try/catch blocks severely impacts the
readability of source code because it makes it too
difficult to understand which block will catch which
exception.

CODE_SMELL MAJOR 11

Empty arrays and
collections should be
returned instead of
null

Returning null instead of an actual array, collection or
map forces callers of the method to explicitly test for
nullity, making them more complex and less
readable. Moreover, in many cases, null is used as a
synonym for empty. Noncompliant Code Example
public static List<Result> getAllResults() {
return null; // Noncompliant } public
static Result[] getResults() { return null;
// Noncompliant } public static Map<String,
Object> getValues() { return null;
// Noncompliant } public static void main(String[]
args) { Result[] results = getResults(); if (results !=
null) { // Nullity test required to prevent
NPE for (Result result: results) { /* ... */ } }
List<Result> allResults = getAllResults(); if
(allResults != null) { // Nullity test required to
prevent NPE for (Result result: allResults) { /* ...
*/ } } Map<String, Object> values =
getValues(); if (values != null) { // Nullity
test required to prevent NPE values.forEach((k, v) -
> doSomething(k, v)); } } Compliant Solution
public static List<Result> getAllResults() {
return Collections.emptyList(); // Compliant }
public static Result[] getResults() { return new
Result[0]; // Compliant } public static
Map<String, Object> getValues() { return
Collections.emptyMap(); // Compliant } public
static void main(String[] args) { for (Result result:
getAllResults()) { /* ... */ } for (Result result:
getResults()) { /* ... */ } getValues().forEach((k, v)
-> doSomething(k, v)); } See CERT, MSC19-C. -
For functions that return an array, prefer returning an
empty array over a null value CERT, MET55-J. -
Return an empty array or collection instead of a null
value for methods that return an array or collection

CODE_SMELL MAJOR 12

Unused method
parameters should be
removed

Unused parameters are misleading. Whatever the
values passed to such parameters, the behavior will
be the same. Noncompliant Code Example void
doSomething(int a, int b) { // "b" is unused
compute(a); } Compliant Solution void
doSomething(int a) { compute(a); } Exceptions The
rule will not raise issues for unused parameters:
that are annotated with

CODE_SMELL MAJOR 2

crp-gateway-parent

15

@javax.enterprise.event.Observes in overrides and
implementation methods in interface default
methods in non-private methods that only throw or
that have empty bodies in annotated methods,
unless the annotation is
@SuppressWarning("unchecked") or
@SuppressWarning("rawtypes"), in which case the
annotation will be ignored in overridable methods
(non-final, or not member of a final class, non-static,
non-private), if the parameter is documented with a
proper javadoc. @Override void doSomething(int
a, int b) { // no issue reported on b compute(a); }
public void foo(String s) { // designed to be extended
but noop in standard case } protected void bar(String
s) { //open-closed principle } public void qix(String s)
{ throw new UnsupportedOperationException("This
method should be implemented in subclasses"); } /**
* @param s This string may be use for further
computation in overriding classes */ protected void
foobar(int a, String s) { // no issue, method is
overridable and unused parameter has proper
javadoc compute(a); } See CERT, MSC12-C. -
Detect and remove code that has no effect or is never
executed

Throwable and Error
should not be caught

Throwable is the superclass of all errors and
exceptions in Java. Error is the superclass of all errors,
which are not meant to be caught by applications.
Catching either Throwable or Error will also catch
OutOfMemoryError and InternalError, from which an
application should not attempt to recover.
Noncompliant Code Example try { /* ... */ } catch
(Throwable t) { /* ... */ } try { /* ... */ } catch (Error e)
{ /* ... */ } Compliant Solution try { /* ... */ } catch
(RuntimeException e) { /* ... */ } try { /* ... */ } catch
(MyException e) { /* ... */ } See MITRE, CWE-396 -
Declaration of Catch for Generic Exception C++
Core Guidelines E.14 - Use purpose-designed user-
defined types as exceptions (not built-in types)

CODE_SMELL MAJOR 7

Sections of code
should not be
commented out

Programmers should not comment out code as it
bloats programs and reduces readability. Unused
code should be deleted and can be retrieved from
source control history if required.

CODE_SMELL MAJOR 2

Anonymous inner
classes containing only
one method should

Before Java 8, the only way to partially support
closures in Java was by using anonymous inner
classes. But the syntax of anonymous classes may
seem unwieldy and unclear. With Java 8, most uses of

CODE_SMELL MAJOR 1

crp-gateway-parent

16

become lambdas anonymous inner classes should be replaced by
lambdas to highly increase the readability of the
source code. Note that this rule is automatically
disabled when the project’s sonar.java.source is
lower than 8. Noncompliant Code Example
myCollection.stream().map(new
Mapper<String,String>() { public String
map(String input) { return new
StringBuilder(input).reverse().toString(); } });
Predicate<String> isEmpty = new
Predicate<String> { boolean test(String
myString) { return myString.isEmpty(); } }
Compliant Solution myCollection.stream().map(input
-> new StringBuilder(input).reverse().toString());
Predicate<String> isEmpty = myString ->
myString.isEmpty();

Unused assignments
should be removed

A dead store happens when a local variable is
assigned a value that is not read by any subsequent
instruction. Calculating or retrieving a value only to
then overwrite it or throw it away, could indicate a
serious error in the code. Even if it’s not an error, it is
at best a waste of resources. Therefore all calculated
values should be used. Noncompliant Code Example i
= a + b; // Noncompliant; calculation result not used
before value is overwritten i = compute(); Compliant
Solution i = a + b; i += compute(); Exceptions This
rule ignores initializations to -1, 0, 1, null, true, false
and "". See MITRE, CWE-563 - Assignment to
Variable without Use ('Unused Variable') CERT,
MSC13-C. - Detect and remove unused values
CERT, MSC56-J. - Detect and remove superfluous
code and values

CODE_SMELL MAJOR 2

Unused type
parameters should be
removed

Type parameters that aren’t used are dead code,
which can only distract and possibly confuse
developers during maintenance. Therefore, unused
type parameters should be removed. Noncompliant
Code Example int <T> Add(int a, int b) //
Noncompliant; <T> is ignored { return a + b; }
Compliant Solution int Add(int a, int b) { return a +
b; }

CODE_SMELL MAJOR 2

Boolean expressions
should not be
gratuitous

If a boolean expression doesn’t change the evaluation
of the condition, then it is entirely unnecessary, and
can be removed. If it is gratuitous because it does not
match the programmer’s intent, then it’s a bug and
the expression should be fixed. Noncompliant Code
Example a = true; if (a) { // Noncompliant

CODE_SMELL MAJOR 3

crp-gateway-parent

17

doSomething(); } if (b && a) { //
Noncompliant; "a" is always "true" doSomething(); }
if (c || !a) { // Noncompliant; "!a" is always "false"
doSomething(); } Compliant Solution a = true; if
(foo(a)) { doSomething(); } if (b) { doSomething(); }
if (c) { doSomething(); } See MITRE, CWE-571 -
Expression is Always True MITRE, CWE-570 -
Expression is Always False

Printf-style format
strings should be used
correctly

Because printf-style format strings are interpreted at
runtime, rather than validated by the compiler, they
can contain errors that result in the wrong strings
being created. This rule statically validates the
correlation of printf-style format strings to their
arguments when calling the format(...) methods of
java.util.Formatter, java.lang.String,
java.io.PrintStream, MessageFormat, and
java.io.PrintWriter classes and the printf(...) methods
of java.io.PrintStream or java.io.PrintWriter classes.
Noncompliant Code Example String.format("First {0}
and then {1}", "foo", "bar"); //Noncompliant. Looks
like there is a confusion with the use of
{{java.text.MessageFormat}}, parameters "foo" and
"bar" will be simply ignored here
String.format("Display %3$d and then %d", 1, 2, 3);
//Noncompliant; the second argument '2' is unused
String.format("Too many arguments %d and %d", 1,
2, 3); //Noncompliant; the third argument '3' is
unused String.format("First Line\n");
//Noncompliant; %n should be used in place of \n to
produce the platform-specific line separator
String.format("Is myObject null ? %b", myObject);
//Noncompliant; when a non-boolean argument is
formatted with %b, it prints true for any nonnull
value, and false for null. Even if intended, this is
misleading. It's better to directly inject the boolean
value (myObject == null in this case)
String.format("value is " + value); // Noncompliant
String s = String.format("string without arguments");
// Noncompliant MessageFormat.format("Result
'{0}'.", value); // Noncompliant; String contains no
format specifiers. (quote are discarding format
specifiers) MessageFormat.format("Result {0}.",
value, value); // Noncompliant; 2nd argument is not
used MessageFormat.format("Result {0}.",
myObject.toString()); // Noncompliant; no need to
call toString() on objects java.util.Logger logger;
logger.log(java.util.logging.Level.SEVERE, "Result
{0}.", myObject.toString()); // Noncompliant; no need
to call toString() on objects

CODE_SMELL MAJOR 2

crp-gateway-parent

18

logger.log(java.util.logging.Level.SEVERE, "Result.",
new Exception()); // compliant, parameter is an
exception logger.log(java.util.logging.Level.SEVERE,
"Result '{0}'", 14); // Noncompliant - String contains
no format specifiers.
logger.log(java.util.logging.Level.SEVERE, "Result " +
param, exception); // Noncompliant; Lambda should
be used to differ string concatenation.
org.slf4j.Logger slf4jLog; org.slf4j.Marker marker;
slf4jLog.debug(marker, "message {}");
slf4jLog.debug(marker, "message", 1); //
Noncompliant - String contains no format specifiers.
org.apache.logging.log4j.Logger log4jLog;
log4jLog.debug("message", 1); // Noncompliant -
String contains no format specifiers. Compliant
Solution String.format("First %s and then %s", "foo",
"bar"); String.format("Display %2$d and then %d", 1,
3); String.format("Too many arguments %d %d", 1, 2);
String.format("First Line%n"); String.format("Is
myObject null ? %b", myObject == null);
String.format("value is %d", value); String s = "string
without arguments"; MessageFormat.format("Result
{0}.", value); MessageFormat.format("Result '{0}' =
{0}", value); MessageFormat.format("Result {0}.",
myObject); java.util.Logger logger;
logger.log(java.util.logging.Level.SEVERE, "Result
{0}.", myObject);
logger.log(java.util.logging.Level.SEVERE, "Result
{0}'", 14); logger.log(java.util.logging.Level.SEVERE,
exception, () -> "Result " + param);
org.slf4j.Logger slf4jLog; org.slf4j.Marker marker;
slf4jLog.debug(marker, "message {}");
slf4jLog.debug(marker, "message {}", 1);
org.apache.logging.log4j.Logger log4jLog;
log4jLog.debug("message {}", 1); See CERT, FIO47-
C. - Use valid format strings

Assignments should
not be redundant

The transitive property says that if a == b and b == c,
then a == c. In such cases, there’s no point in
assigning a to c or vice versa because they’re already
equivalent. This rule raises an issue when an
assignment is useless because the assigned-to
variable already holds the value on all execution
paths. Noncompliant Code Example a = b; c = a; b = c;
// Noncompliant: c and b are already the same
Compliant Solution a = b; c = a;

CODE_SMELL MAJOR 1

Restricted Identifiers
should not be used as

Even if it is technically possible, Restricted Identifiers
should not be used as identifiers. This is only possible

CODE_SMELL MAJOR 4

crp-gateway-parent

19

Identifiers for compatibility reasons, using it in Java code is
confusing and should be avoided. Note that this
applies to any version of Java, including the one
where these identifiers are not yet restricted, to
avoid future confusion. This rule reports an issue
when restricted identifiers: var yield record
are used as identifiers. Noncompliant Code Example
var var = "var"; // Noncompliant: compiles but this
code is confusing var = "what is this?"; int yield(int i)
{ // Noncompliant return switch (i) { case 1:
yield(0); // This is a yield from switch expression, not
a recursive call. default: yield(i-1); }; } String
record = "record"; // Noncompliant Compliant
Solution var myVariable = "var"; int minusOne(int i) {
return switch (i) { case 1: yield(0); default: yield(i-
1); }; } String myRecord = "record"; See JLS16,
3.8: Identifiers

Class variable fields
should not have public
accessibility

Public class variable fields do not respect the
encapsulation principle and has three main
disadvantages: Additional behavior such as
validation cannot be added. The internal
representation is exposed, and cannot be changed
afterwards. Member values are subject to change
from anywhere in the code and may not meet the
programmer’s assumptions. By using private
attributes and accessor methods (set and get),
unauthorized modifications are prevented.
Noncompliant Code Example public class MyClass {
public static final int SOME_CONSTANT = 0; //
Compliant - constants are not checked public String
firstName; // Noncompliant } Compliant
Solution public class MyClass { public static final int
SOME_CONSTANT = 0; // Compliant - constants are
not checked private String firstName; //
Compliant public String getFirstName() { return
firstName; } public void setFirstName(String
firstName) { this.firstName = firstName; } }
Exceptions Because they are not modifiable, this rule
ignores public final fields. Also, annotated fields,
whatever the annotation(s) will be ignored, as
annotations are often used by injection frameworks,
which in exchange require having public fields. See
MITRE, CWE-493 - Critical Public Variable Without
Final Modifier

CODE_SMELL MINOR 3

Empty statements
should be removed

Empty statements, i.e. ;, are usually introduced by
mistake, for example because: It was meant to be
replaced by an actual statement, but this was

CODE_SMELL MINOR 7

crp-gateway-parent

20

forgotten. There was a typo which lead the
semicolon to be doubled, i.e. ;;. Noncompliant Code
Example void doSomething() { ;
// Noncompliant - was used as a kind of TODO marker
} void doSomethingElse() {
System.out.println("Hello, world!");; //
Noncompliant - double ; ... } Compliant Solution
void doSomething() {} void doSomethingElse() {
System.out.println("Hello, world!"); ... for (int i = 0;
i < 3; i++) ; // compliant if unique statement of a
loop ... } See CERT, MSC12-C. - Detect and remove
code that has no effect or is never executed CERT,
MSC51-J. - Do not place a semicolon immediately
following an if, for, or while condition CERT,
EXP15-C. - Do not place a semicolon on the same line
as an if, for, or while statement

Return of boolean
expressions should not
be wrapped into an
"if-then-else"
statement

Return of boolean literal statements wrapped into if-
then-else ones should be simplified. Similarly,
method invocations wrapped into if-then-else
differing only from boolean literals should be
simplified into a single invocation. Noncompliant
Code Example boolean foo(Object param) { if
(expression) { // Noncompliant bar(param, true,
"qix"); } else { bar(param, false, "qix"); } if
(expression) { // Noncompliant return true; } else
{ return false; } } Compliant Solution boolean
foo(Object param) { bar(param, expression, "qix");
return expression; }

CODE_SMELL MINOR 1

Unnecessary imports
should be removed

The imports part of a file should be handled by the
Integrated Development Environment (IDE), not
manually by the developer. Unused and useless
imports should not occur if that is the case. Leaving
them in reduces the code’s readability, since their
presence can be confusing. Noncompliant Code
Example package my.company; import
java.lang.String; // Noncompliant; java.lang
classes are always implicitly imported import
my.company.SomeClass; // Noncompliant; same-
package files are always implicitly imported import
java.io.File; // Noncompliant; File is not used
import my.company2.SomeType; import
my.company2.SomeType; // Noncompliant;
'SomeType' is already imported class ExampleClass {
public String someString; public SomeType
something; } Exceptions Imports for types
mentioned in Javadocs are ignored.

CODE_SMELL MINOR 9

crp-gateway-parent

21

Collection.isEmpty()
should be used to test
for emptiness

Using Collection.size() to test for emptiness works,
but using Collection.isEmpty() makes the code more
readable and can be more performant. The time
complexity of any isEmpty() method implementation
should be O(1) whereas some implementations of
size() can be O(n). Noncompliant Code Example if
(myCollection.size() == 0) { // Noncompliant /* ... */
} Compliant Solution if (myCollection.isEmpty()) { /*
... */ }

CODE_SMELL MINOR 4

Exception classes
should be immutable

Exceptions are meant to represent the application’s
state at the point at which an error occurred. Making
all fields in an Exception class final ensures that this
state: Will be fully defined at the same time the
Exception is instantiated. Won’t be updated or
corrupted by a questionable error handler. This will
enable developers to quickly understand what went
wrong. Noncompliant Code Example public class
MyException extends Exception { private int status;
// Noncompliant public MyException(String
message) { super(message); } public int
getStatus() { return status; } public void
setStatus(int status) { this.status = status; } }
Compliant Solution public class MyException extends
Exception { private final int status; public
MyException(String message, int status) {
super(message); this.status = status; } public int
getStatus() { return status; } }

CODE_SMELL MINOR 3

Overriding methods
should do more than
simply call the same
method in the super
class

Overriding a method just to call the same method
from the super class without performing any other
actions is useless and misleading. The only time this is
justified is in final overriding methods, where the
effect is to lock in the parent class behavior. This rule
ignores such overrides of equals, hashCode and
toString. Noncompliant Code Example public void
doSomething() { super.doSomething(); } @Override
public boolean isLegal(Action action) { return
super.isLegal(action); } Compliant Solution
@Override public boolean isLegal(Action action) {
// Compliant - not simply forwarding the call return
super.isLegal(new Action(/* ... */)); } @Id @Override
public int getId() { // Compliant - there
is annotation different from @Override return
super.getId(); }

CODE_SMELL MINOR 1

Type parameter
names should comply

Shared naming conventions make it possible for a
team to collaborate efficiently. Following the

CODE_SMELL MINOR 3

crp-gateway-parent

22

with a naming
convention

established convention of single-letter type
parameter names helps users and maintainers of
your code quickly see the difference between a type
parameter and a poorly named class. This rule check
that all type parameter names match a provided
regular expression. The following code snippets use
the default regular expression. Noncompliant Code
Example public class MyClass<TYPE> { //
Noncompliant <TYPE> void method(TYPE t) { //
Noncompliant } } Compliant Solution public class
MyClass<T> { <T> void method(T t) { } }

"switch" statements
should have at least 3
"case" clauses

switch statements are useful when there are many
different cases depending on the value of the same
expression. For just one or two cases however, the
code will be more readable with if statements.
Noncompliant Code Example switch (variable) { case
0: doSomething(); break; default:
doSomethingElse(); break; } Compliant Solution if
(variable == 0) { doSomething(); } else {
doSomethingElse(); }

CODE_SMELL MINOR 4

Loops should not
contain more than a
single "break" or
"continue" statement

Restricting the number of break and continue
statements in a loop is done in the interest of good
structured programming. Only one break or one
continue statement is acceptable in a loop, since it
facilitates optimal coding. If there is more than one,
the code should be refactored to increase readability.
Noncompliant Code Example for (int i = 1; i <= 10;
i++) { // Noncompliant - 2 continue - one might be
tempted to add some logic in between if (i % 2 == 0)
{ continue; } if (i % 3 == 0) { continue; }
System.out.println("i = " + i); }

CODE_SMELL MINOR 4

"public static" fields
should be constant

There is no good reason to declare a field "public"
and "static" without also declaring it "final". Most of
the time this is a kludge to share a state among
several objects. But with this approach, any object
can do whatever it wants with the shared state, such
as setting it to null. Noncompliant Code Example
public class Greeter { public static Foo foo = new
Foo(); ... } Compliant Solution public class Greeter {
public static final Foo FOO = new Foo(); ... } See
MITRE, CWE-500 - Public Static Field Not Marked
Final CERT OBJ10-J. - Do not use public static
nonfinal fields

CODE_SMELL MINOR 3

Unused local variables If a local variable is declared but not used, it is dead
code and should be removed. Doing so will improve

CODE_SMELL MINOR 1

crp-gateway-parent

23

should be removed maintainability because developers will not wonder
what the variable is used for. Noncompliant Code
Example public int numberOfMinutes(int hours) {
int seconds = 0; // seconds is never used return
hours * 60; } Compliant Solution public int
numberOfMinutes(int hours) { return hours * 60; }

Local variables should
not be declared and
then immediately
returned or thrown

Declaring a variable only to immediately return or
throw it is a bad practice. Some developers argue
that the practice improves code readability, because
it enables them to explicitly name what is being
returned. However, this variable is an internal
implementation detail that is not exposed to the
callers of the method. The method name should be
sufficient for callers to know exactly what will be
returned. Noncompliant Code Example public long
computeDurationInMilliseconds() { long duration =
(((hours * 60) + minutes) * 60 + seconds) * 1000 ;
return duration; } public void doSomething() {
RuntimeException myException = new
RuntimeException(); throw myException; }
Compliant Solution public long
computeDurationInMilliseconds() { return (((hours *
60) + minutes) * 60 + seconds) * 1000 ; } public void
doSomething() { throw new RuntimeException(); }

CODE_SMELL MINOR 1

Lambdas should be
replaced with method
references

Method/constructor references are commonly
agreed to be, most of the time, more compact and
readable than using lambdas, and are therefore
preferred. In some rare cases, when it is not clear
from the context what kind of function is being
described and reference would not increase the
clarity, it might be fine to keep the lambda. Similarly,
null checks can be replaced with references to the
Objects::isNull and Objects::nonNull methods, casts
can be replaced with SomeClass.class::cast and
instanceof can be replaced with
SomeClass.class::isInstance. Note that this rule is
automatically disabled when the project’s
sonar.java.source is lower than 8. Noncompliant Code
Example class A { void process(List<A> list) {
list.stream() .filter(a -> a instanceof B)
.map(a -> (B) a) .map(b ->
b.<String>getObject()) .forEach(b -> {
System.out.println(b); }); } } class B extends A {
<T> T getObject() { return null; } } Compliant
Solution class A { void process(List<A> list) {
list.stream() .filter(B.class::isInstance)
.map(B.class::cast)

CODE_SMELL MINOR 2

crp-gateway-parent

24

.map(B::<String>getObject)

.forEach(System.out::println); } } class B extends A {
<T> T getObject() { return null; } }

Multiple variables
should not be declared
on the same line

Declaring multiple variables on one line is difficult to
read. Noncompliant Code Example class MyClass {
private int a, b; public void method(){ int c; int d;
} } Compliant Solution class MyClass { private int a;
private int b; public void method(){ int c; int d;
} } See CERT, DCL52-J. - Do not declare more than
one variable per declaration CERT, DCL04-C. - Do
not declare more than one variable per declaration

CODE_SMELL MINOR 1

"@Deprecated" code
should not be used

Once deprecated, classes, and interfaces, and their
members should be avoided, rather than used,
inherited or extended. Deprecation is a warning that
the class or interface has been superseded, and will
eventually be removed. The deprecation period
allows you to make a smooth transition away from
the aging, soon-to-be-retired technology.
Noncompliant Code Example /** * @deprecated As
of release 1.3, replaced by {@link #Fee} */
@Deprecated public class Fum { ... } public class Foo {
/** * @deprecated As of release 1.7, replaced by
{@link #doTheThingBetter()} */ @Deprecated
public void doTheThing() { ... } public void
doTheThingBetter() { ... } } public class Bar extends
Foo { public void doTheThing() { ... } //
Noncompliant; don't override a deprecated method
or explicitly mark it as @Deprecated } public class Bar
extends Fum { // Noncompliant; Fum is deprecated
public void myMethod() { Foo foo = new Foo(); //
okay; the class isn't deprecated foo.doTheThing();
// Noncompliant; doTheThing method is deprecated
} } See MITRE, CWE-477 - Use of Obsolete
Functions CERT, MET02-J. - Do not use deprecated
or obsolete classes or methods

CODE_SMELL MINOR 3

Classes should not be
empty

There is no good excuse for an empty class. If it’s
being used simply as a common extension point, it
should be replaced with an interface. If it was
stubbed in as a placeholder for future development it
should be fleshed-out. In any other case, it should be
eliminated. Noncompliant Code Example public class
Nothing { // Noncompliant } Compliant Solution
public interface Nothing { } Exceptions Empty classes
can be used as marker types (for Spring for instance),
therefore empty classes that are annotated will be
ignored. @Configuration @EnableWebMvc public

CODE_SMELL MINOR 1

crp-gateway-parent

25

final class ApplicationConfiguration { }

Subclasses that add
fields should override
"equals"

Extend a class that overrides equals and add fields
without overriding equals in the subclass, and you
run the risk of non-equivalent instances of your
subclass being seen as equal, because only the
superclass fields will be considered in the equality
test. This rule looks for classes that do all of the
following: extend classes that override equals. do
not themselves override equals. add fields.
Noncompliant Code Example public class Fruit {
private Season ripe; public boolean equals(Object
obj) { if (obj == this) { return true; } if
(this.class != obj.class) { return false; } Fruit
fobj = (Fruit) obj; if (ripe.equals(fobj.getRipe()) {
return true; } return false; } } public class
Raspberry extends Fruit { // Noncompliant; instances
will use Fruit's equals method private Color
ripeColor; } Compliant Solution public class Fruit {
private Season ripe; public boolean equals(Object
obj) { if (obj == this) { return true; } if
(this.class != obj.class) { return false; } Fruit
fobj = (Fruit) obj; if (ripe.equals(fobj.getRipe()) {
return true; } return false; } } public class
Raspberry extends Fruit { private Color ripeColor;
public boolean equals(Object obj) { if (!
super.equals(obj)) { return false; } Raspberry
fobj = (Raspberry) obj; if
(ripeColor.equals(fobj.getRipeColor()) { // added
fields are tested return true; } return false; }
}

CODE_SMELL MINOR 1

The diamond operator
("<>") should be used

Java 7 introduced the diamond operator (<>) to
reduce the verbosity of generics code. For instance,
instead of having to declare a List's type in both its
declaration and its constructor, you can now simplify
the constructor declaration with <>, and the
compiler will infer the type. Note that this rule is
automatically disabled when the project’s
sonar.java.source is lower than 7. Noncompliant Code
Example List<String> strings = new
ArrayList<String>(); // Noncompliant
Map<String,List<Integer>> map = new
HashMap<String,List<Integer>>(); //
Noncompliant Compliant Solution List<String>
strings = new ArrayList<>();
Map<String,List<Integer>> map = new
HashMap<>();

CODE_SMELL MINOR 5

crp-gateway-parent

26

Mutable fields should
not be "public static"

There is no good reason to have a mutable object as
the public (by default), static member of an interface.
Such variables should be moved into classes and their
visibility lowered. Similarly, mutable static members
of classes and enumerations which are accessed
directly, rather than through getters and setters,
should be protected to the degree possible. That can
be done by reducing visibility or making the field final
if appropriate. Note that making a mutable field, such
as an array, final will keep the variable from being
reassigned, but doing so has no effect on the
mutability of the internal state of the array (i.e. it
doesn’t accomplish the goal). This rule raises issues
for public static array, Collection, Date, and awt.Point
members. Noncompliant Code Example public
interface MyInterface { public static String [] strings;
// Noncompliant } public class A { public static String
[] strings1 = {"first","second"}; // Noncompliant
public static String [] strings2 = {"first","second"}; //
Noncompliant public static List<String>
strings3 = new ArrayList<>(); // Noncompliant
// ... } See MITRE, CWE-582 - Array Declared Public,
Final, and Static MITRE, CWE-607 - Public Static
Final Field References Mutable Object CERT, OBJ01-
J. - Limit accessibility of fields CERT, OBJ13-J. -
Ensure that references to mutable objects are not
exposed

CODE_SMELL MINOR 3

"catch" clauses should
do more than rethrow

A catch clause that only rethrows the caught
exception has the same effect as omitting the catch
altogether and letting it bubble up automatically, but
with more code and the additional detriment of
leaving maintainers scratching their heads. Such
clauses should either be eliminated or populated with
the appropriate logic. Noncompliant Code Example
public String readFile(File f) { StringBuilder sb = new
StringBuilder(); try { FileReader fileReader = new
FileReader(fileName); BufferedReader
bufferedReader = new BufferedReader(fileReader);
while((line = bufferedReader.readLine()) != null) {
//... } catch (IOException e) { // Noncompliant
throw e; } return sb.toString(); } Compliant
Solution public String readFile(File f) { StringBuilder
sb = new StringBuilder(); try { FileReader
fileReader = new FileReader(fileName);
BufferedReader bufferedReader = new
BufferedReader(fileReader); while((line =
bufferedReader.readLine()) != null) { //... } catch
(IOException e) { logger.LogError(e); throw e; }

CODE_SMELL MINOR 1

crp-gateway-parent

27

return sb.toString(); } or public String readFile(File f)
throws IOException { StringBuilder sb = new
StringBuilder(); FileReader fileReader = new
FileReader(fileName); BufferedReader
bufferedReader = new BufferedReader(fileReader);
while((line = bufferedReader.readLine()) != null) {
//... return sb.toString(); }

Jump statements
should not be
redundant

Jump statements such as return and continue let you
change the default flow of program execution, but
jump statements that direct the control flow to the
original direction are just a waste of keystrokes.
Noncompliant Code Example public void foo() {
while (condition1) { if (condition2) { continue; //
Noncompliant } else { doTheThing(); } }
return; // Noncompliant; this is a void method }
Compliant Solution public void foo() { while
(condition1) { if (!condition2) { doTheThing(); }
} }

CODE_SMELL MINOR 1

Composed
"@RequestMapping"
variants should be
preferred

Spring framework 4.3 introduced variants of the
@RequestMapping annotation to better represent
the semantics of the annotated methods. The use of
@GetMapping, @PostMapping, @PutMapping,
@PatchMapping and @DeleteMapping should be
preferred to the use of the raw
@RequestMapping(method = RequestMethod.XYZ).
Noncompliant Code Example
@RequestMapping(path = "/greeting", method =
RequestMethod.GET) // Noncompliant public
Greeting greeting(@RequestParam(value = "name",
defaultValue = "World") String name) { ... } Compliant
Solution @GetMapping(path = "/greeting") //
Compliant public Greeting
greeting(@RequestParam(value = "name",
defaultValue = "World") String name) { ... }

CODE_SMELL MINOR 13

crp-gateway-parent

28

SECURITY HOTSPOTS

SECURITY HOTSPOTS COUNT BY CATEGORY AND PRIORITY

Category / Priority LOW MEDIUM HIGH

LDAP Injection 0 0 0

Object Injection 0 0 0

Server-Side Request Forgery (SSRF) 0 0 0

XML External Entity (XXE) 0 0 0

Insecure Configuration 0 0 0

XPath Injection 0 0 0

Authentication 0 0 0

Weak Cryptography 0 0 0

Denial of Service (DoS) 0 0 0

Log Injection 0 0 0

Cross-Site Request Forgery (CSRF) 0 0 0

Open Redirect 0 0 0

Permission 0 0 0

SQL Injection 0 0 0

Encryption of Sensitive Data 0 0 0

Traceability 0 0 0

Buffer Overflow 0 0 0

File Manipulation 0 0 0

Code Injection (RCE) 0 0 0

crp-gateway-parent

29

Cross-Site Scripting (XSS) 0 0 0

Command Injection 0 0 0

Path Traversal Injection 0 0 0

HTTP Response Splitting 0 0 0

Others 0 0 0

SECURITY HOTSPOTS LIST

